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Abstract—We propose an extension of a neural-based back-
ground subtraction approach to moving object detection to
the case of image sequences taken from Pan-Tilt-Zoom (PTZ)
cameras. The background model automatically adapts in a self-
organizing way to changes in the scene background. Background
variations arising in a usual stationary camera setting, such as
those due to gradual illumination changes, to waving trees, or to
shadows cast by moving objects, are accurately handled by the
neural self-organizing background model originally proposed for
this type of setting. Handling of variations due to the PTZ camera
movement is ensured by a novel registration mechanism that
allows the neural background model to automatically compensate
the eventual ego-motion, estimated at each time instant. Experi-
mental results on several real image sequences and comparisons
with seven state-of-the-art methods demonstrate the accuracy of
the proposed approach.

Index Terms—artificial neural network, background subtrac-
tion, motion detection, PTZ camera, self organization, video
surveillance.

I. INTRODUCTION

AUTOMATED video surveillance using video analysis
and understanding technology has become an important

research topic in the area of computer vision. Within video
understanding technology for surveillance use, moving object
detection is known to be a significant and difficult research
problem. Indeed, aside from the intrinsic usefulness of being
able to segment video streams into moving and background
components, moving object detection provides a focus of
attention for recognition, classification, and activity analysis,
making these later steps more efficient, since only moving
pixels need to be considered [1].

Most cameras used in surveillance are fixed, allowing one
to only look at one specific view of the surveilled area. For
scenes taken from this type of cameras the most common and
efficient approach to moving object detection is background
subtraction, that consists in maintaining an up-to-date model
of the fixed background and detecting moving objects as those
that deviate from such model. Due to its pervasiveness in
various contexts, background subtraction has been afforded by
several researchers, and plenty of literature has been published
(see surveys in [2]–[6]). Compared to other approaches, such
as optical flow, this approach is computationally affordable
for real-time applications, is independent on moving object
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velocity, and is not subject to the foreground aperture prob-
lem. Nevertheless, the background subtraction approach is
highly sensitive to dynamic scene changes due to lighting
and extraneous events, with the consequent need for a suitable
adaptation of the background model [7], [8].

The growing proliferation of moving camera platforms,
such as smart phones and robots, is highlighting the severe
limits imposed by the assumption of camera stationarity [9],
[10]. Many attempts have been done in order to solve the
problem in the case of freely moving cameras [9], [11]–
[14]. Recently, the progress in sensor technologies has lead
to a growing dissemination of a specific type of moving
cameras, the so-called Pan-Tilt-Zoom (PTZ) cameras, that can
dynamically modify their field of view through the use of
panning, tilting, and zooming (i.e., moving left and right,
up and down, closer and farther away). Their functionality
introduces new surveillance capabilities, such as increasing the
resolution of moving targets and adapting the sensor coverage,
thus enabling to focus the attention on automatically selected
areas of interest. On the other hand, the PTZ camera movement
has introduced new challenges. A first problem is represented
by the fact that, due to the camera movement, even pixels
belonging to static objects appear to move in the camera frame.
Such an effect is called ego-motion and its estimation and
compensation represents one of the main objectives of the
active vision research area [15]. Extensive research carried
out regarding moving object detection for PTZ cameras can
be categorized into three approaches [16]:

• The optical flow clustering-based approach calculates
dense or sparse optical flows and clusters them in order
to identify moving object regions [17], [18].

• The mosaiced background-based approach creates a mo-
saiced background image and then uses a background
subtraction technique to extract moving object regions
[19]–[24].

• The background compensation-based approach estimates
the transformation parameters between consecutive im-
ages by using corresponding features extracted from these
images and creates a difference image in order to detect
moving object regions [16], [25]–[27].

The latter approach is widely adopted, because it requires
less computational cost and memory storage compared to the
other two approaches. Most of these methods deal with PT
cameras, and some of them are applicable to a PTZ camera.
Indeed, in the case of zooming, the motion parallax problem
arises, where the apparent motion of objects closer to the
image plane is higher than that of objects that are further
away. Instead, when there is no motion parallax, the apparent
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motion of all objects in the scene does not depend on their
distance from the camera. This can be guaranteed by rotating
the camera around its optical center (approach taken by many
commercial systems) and holds also for most cameras when
objects are far from it [19].

We afford the problem of moving object detection for PTZ
cameras based on the adoption of artificial neural networks
(ANNs), which are among the soft computing tools most
frequently adopted for several video surveillance tasks, due to
their well-known advantages, such as adaptivity and learning
[28]. Indeed, an ANN can modify its connection weights using
some training algorithms or learning rules; by updating the
weights, the ANN can optimize its connections to adapt to
changes in the environment. The capability of neural networks
in emulating many unknown functional links by learning
offline a limited set of representative examples allows one
to infer a function from observations. This allows one to
learn representations of the input that capture the salient input
distribution features.

Neural network-based solutions to moving object detection
have received considerable attention due to the fact that
these methods are usually more effective and efficient than
traditional ones [29]–[36]. Here we propose a neural-based
background subtraction approach to moving object detection
in image sequences taken from PTZ cameras, where the
background model automatically adapts in a self-organizing
way to the scene background variations. Such variations can
be both those arising in a usual stationary camera setting (i.e.,
changes due to gradual illumination variations, to waving trees,
or to shadows cast by moving objects [7]) and those due
to the PTZ camera movement. The first type of variations
are accurately handled by a neural background model for
stationary cameras that has proven to accurately model image
sequences and their variations in time [32]; this provides
a background model particularly suitable for moving object
detection, allowing us to robustly deal with typical problems
of background subtraction. Handling of variations due to the
camera movement is ensured by a novel registration mech-
anism applied to the neural background model in order to
automatically compensate the eventual ego-motion, suitably
estimated at each time instant. Therefore, contrary to previous
background compensation-based approaches to moving object
detection for PTZ cameras, background subtraction is achieved
by an accurate and well-settled model, suitably adapted to
the problem at hand, and not by frame differencing, which
is notoriously sensitive to noise and variations in illumination
and subject to the aperture problem [2], [5].

The paper is organized as follows. In Section II, we describe
the neural self-organizing model for image sequences, and
describe how such model is used for background modeling
and how it is adapted to handle background variations due
to the PTZ camera movement. In Section III, we present
results achieved with the implementation of the proposed
approach in terms of attained accuracy, comparing them with
those obtained by several state-of-the-art methods. Section IV
includes concluding remarks.

II. SELF-ORGANIZING BACKGROUND SUBTRACTION FOR
VIDEO SEQUENCES TAKEN BY PTZ CAMERAS

The basic idea of our approach to moving object detection
in image sequences taken from PTZ cameras consists of ex-
ploiting the available knowledge concerning the self-organized
learning behavior of the brain, which is the foundation of
human visual perception. Indeed, this brain behavior has been
studied for a long time by many people, starting with [37],
finding that topographically ordered maps are widely observed
in the brain cortex. The main structures of the cortical maps
are established before birth in a predetermined topographically
ordered fashion; other more detailed areas (associative areas),
however, are developed through self-organization gradually
during life and in a topographically meaningful order [28].
Taking into account such topographically ordered projections
is undoubtedly important for understanding and constructing
dimension-reduction mappings and for the effective represen-
tation of sensory information and feature extraction. Therefore,
relying on recent research in this area [32], we build the
sequence background model by learning in a self-organizing
manner image sequence variations, seen as trajectories of
pixels in time. A neural network mapping method is proposed
to use a whole trajectory incrementally in time fed as an
input to the network. Each neuron computes a function of the
weighted linear combination of incoming inputs, and therefore
can be represented by a weight vector, obtained collecting
the weights related to incoming links. An incoming pattern
is mapped to the neuron whose set of weight vectors is most
similar to the pattern, and weight vectors in a neighborhood
of such node are updated. The obtained self-organizing neural
network is organized as a 2-D grid of neurons, producing a
representation of training samples with lower dimensionality,
at the same time preserving topological neighborhood relations
of the input patterns. Differently from [32], at each time instant
the neural background model automatically compensates the
eventual ego-motion due to the PTZ camera.

A. Neural Model Representation

Given an image sequence {It}, for each pixel p in the image
domain D, we build a neuronal map consisting of n×n weight
vectors mi,j

t (p), i, j = 0, . . . , n − 1, which will be called a
model for pixel p and will be indicated as Mt(p):

Mt(p) =
{
mi,j

t (p), i, j = 0, . . . , n− 1
}
. (1)

If every sequence frame has N rows and P columns, the
complete set of models Mt(p) for all pixels p of the tth
sequence frame It is organized as a 2D neuronal map Bt with
n × N rows and n × P columns, where the weight vectors
mi,j

t (p) for the generic pixel p = (x, y) are at neuronal map
position (n× x+ i, n× y + j), i, j = 0, . . . , n− 1:

Bt(n× x+ i, n× y+ j) = mi,j
t (p), i, j = 0, . . . , n− 1. (2)

This configuration of the whole neuronal map Bt allows us
to easily take into account the spatial relationship among
pixels and corresponding weight vectors, as we shall see in
the following subsections.
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We explicitly observe that the notation introduced in (1) and
(2) appears redundant. However, in the sequel we will adopt
both notations:

• the model Mt(p) for pixel p will be adopted to indicate
the whole set of weight vectors for each single pixel,
helping to focalize on the pixelwise representation of the
background model;

• the neuronal map Bt will be adopted to refer to the whole
background model for an image sequence, to highlight
spatial relationships among weight vectors of adjacent
pixels, and to detail the implementation of the proposed
moving object detection algorithm. Indeed, besides its
role as a background model, the neuronal map Bt can
be thought of as a 2D array that stores, at each time t,
all the weight vectors of the background model needed
for background subtraction.

B. Neural Model Initialization

In the case of our background modeling application, we
have at our disposal a fairly good means of initializing the
weight vectors of the network, because the first image of the
sequence I0 is indeed a good initial approximation of the
background. Therefore, for each pixel p, the corresponding
weight vectors of the model M0(p) are initialized with the
pixel brightness value at time t = 0:

mi,j
0 (p) = I0(p), i, j = 0, . . . , n− 1. (3)

Therefore, the resulting neuronal map B0, obtained for all
pixels p as in (2) with t=0, using the values specified in
(3), can be seen as an n × n enlarged version of the first
sequence frame I0. However, it is important to observe that
the background model, arranged as a 2-D grid of 3-D weight
vectors, could be seen as an image map at pixel super-
resolution only at this stage. Indeed, as it will be clear in
the next paragraph, the neural model update is carried out
following the connections between neurons into the neuronal
map.

C. Background Subtraction and Neural Model Update

At each subsequent time step t, background subtraction is
achieved by comparing each pixel of the tth sequence frame
It with the model for that pixel.

For the case of image sequences taken from stationary
cameras [32], each incoming pixel p of It is compared
to the current pixel model Mt−1(p) to determine if there
exists a best matching weight vector BM(p) that is close
enough to it. If no acceptable matching weight vector exists,
p is detected as belonging to a moving object (foreground).
Otherwise, if such weight vector is found, it means that p
is a background pixel. In the latter case, further learning
of the neuronal map allows the background model to adapt
to slight scene modifications. Such learning is achieved by
updating the neural weights according to a visual attention
mechanism of reinforcement, where the best matching weight
vector, together with its neighborhood, is reinforced into the
neuronal map. This step is not simply a modification of few

neighboring pixels, but an adaptation of the weights, in a
precise topological neighborhood, determined by connections
between neurons into the neuronal map.

In the more general case of image sequences taken from
PTZ cameras, the incoming pixel p of the tth sequence frame
It could have moved as compared to the previous time t-1.
Therefore, the current model Mt−1(p), whose weight vectors
are stored in Bt−1 as described in (2), could be an improper
model for actual pixel p. In order to keep track of such spatial
movements, we apply a novel registration mechanism to the
background model. To this end, we compute the homography
H between sequence frames It−1 and It, that allows us to
obtain, for each pixel p′ of It−1, the corresponding pixel
p=Hp′ of It, and to exploit this information in order to address
the proper model for current pixel p.

The above described background subtraction and update
procedure for each pixel can be sketched as the algorithm
named PTZ-SOBS (Self-Organizing Background Subtraction
for video sequences taken by PTZ cameras) reported in Fig.
1. Contrary to SOBS algorithm [32], we do not distinguish

PTZ-SOBS algorithm
Input: value It(p) of pixel p in frame It, t = 0, . . . , T.
Output: background model Mt(p) for pixel p at time t;

detection mask value Dt(p) for pixel p at time t.

1. Initialize background model M0(p) as in (3)
2. for t = 1, T
3. Compute homography H between It−1 and It
4. if (∃p′ s.t. p=Hp′) then
5. Find in Mt−1(p′) the best match BM(p) to It(p)
6. if (BM(p) close enough to It(p)) then
7. Dt(p) = 0 //background
8. Mt(p) = update(Mt−1(p′), It(p))
9. else
10. Dt(p) = 1 //foreground
11. Mt(p) = Mt−1(p′)
12. else
13. Initialize background model Mt(p)

Fig. 1. PTZ-SOBS algorithm.

the whole process into the two calibration and online phases.
Indeed, although the calibration phase, involving the neural
network initial learning, could be beneficial in order to obtain
a much richer initial background model, in the case of image
sequences taken from PTZ cameras we cannot assume a
sufficient number of initial frames that are free of moving
foreground objects. All the steps of PTZ-SOBS algorithm not
yet detailed in our previous description will be thoroughly
analyzed in the following subsections.

1) Computing the Homography H Between It−1 and It: In
the case of a PTZ camera, consecutive frames are related by
a homography [38] that is a 3× 3 matrix which maps points
on a plane in one frame into points on a plane in the other
frame.

Given a set of points pi in It and a corresponding set
of points p′

i in It−1, the task is to compute the projective
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transformation, a 3 × 3 matrix H , that maps each p′
i to pi,

i.e., pi = Hp′
i, for each i.

In order to compute H we employ a feature based approach
using Scale Invariant Feature Transform (SIFT) keypoints
[39]. SIFT keypoints are extracted from each new frame and
then matched to those extracted from the previous frame.
The homography H is then estimated by means of Direct
Linear Transformation [38] and Random Sample Consensus
[40] algorithms that yield an initial guess for H and a list
of inlier matches. The initial estimated homography H is
further refined by using Levemberg-Marquardt optimization
minimizing the reprojection error.

2) Finding the Best Match BM(p) to It(p): In the case
that current pixel p in It corresponds to a pixel p′ in It−1,
that is, p = Hp′ (see line 4 of PTZ-SOBS algorithm), the
value It(p) is compared to the current pixel model, given by
Mt−1(p′), to determine the weight vector BM(p) that best
matches it:

d(BM(p), It(p)) = min
i,j=0,...,n−1

d(mi,j
t−1(p

′), It(p)) (4)

where the metric d(·, ·) is suitably chosen according to the
specific color space being considered. Example metrics could
be the Euclidean distance in RGB color space, or the Euclidean
distance of vectors in the HSV color hexcone, as suggested in
[41]. The latter is the one adopted for the experiments reported
in Section III. Indeed, the HSV color space allows one to
specify colors in a way that is close to human experience of
colors, relying on the hue, saturation, and value properties
of each color. Moreover, hue stability against illumination
changes is known to be important both for cast shadow
suppression [42] and for motion analysis [43]–[45].

The best matching weight vector BM(p), computed as in
(4), is considered close enough to the pixel value It(p) (see
line 6 of PTZ-SOBS algorithm) if

d(BM(p), It(p)) ≤ ϵ (5)

where ϵ is a threshold allowing one to distinguish between
foreground and background pixels. High values for ϵ allow us
to obtain a background model including several observed pixel
intensity variations, but these could be also due to moving
objects. On the other side, lower values allow us to obtain a
background model with less spurious pixels due to moving
objects, at the price of lower detection accuracy.

If BM(p) satisfies (5) then p is detected as a background
pixel (see line 7 of PTZ-SOBS algorithm); otherwise it is
detected as a foreground pixel (see line 10 of PTZ-SOBS
algorithm).

3) Updating the Model for pixel p: If p is detected as a
background pixel, then its model should be updated, while
if it is a foreground pixel, no update should be applied.
This selectivity allows the background model to adapt to
scene modifications, such as gradual light changes, without
introducing the contribution of pixels that do not belong to
the background scene, such as moving or standing persons and
abandoned objects [46]. However, in both cases modifications
should be applied to the model of p in order to take into
account the eventual movement of the PTZ camera from the
previous frame.

If an acceptable best matching weight vector BM(p) is
found for current sample p, satisfying (5), the current pixel
model, given by Mt−1(p′), should be updated (see line 8 of
PTZ-algorithm). To this end, the weight vectors of Bt−1 in a
neighborhood of BM(p) are updated according to selective
weighted running average. In details, if BM(p) is found at
position p in Bt−1, then weight vectors of Bt−1 are updated
according to

Bt(q) = (1−α(p,q))Bt−1(q)+α(p,q)It(p) ∀q ∈ Np. (6)

Here Np = {q : |p − q| < w} is a 2D spatial neighborhood of
p of size (2w−1)×(2w−1) including p. Moreover, α(p,q) =
γ ·G(q−p), where γ represents the learning rate, that depends
on the scene variability, while G(·) = N (·; 0, σ2I) is a 2D
Gaussian low-pass filter [47] with zero mean and σ2I variance.
The α(p,q) values are weights that allow us to smoothly take
into account the spatial relationship between current pixel p
(through its best matching weight vector found at position p)
and its neighboring pixels in It (through weight vectors q ∈
Np), thus preserving topological properties of the input (close
inputs correspond to close outputs). Large γ values enable the
network to faster learn changes corresponding to background,
but leading to faster inclusion into the background model
of pixels belonging to foreground moving objects that have
erroneously been detected as background (false negatives).
On the other hand, lower learning rates make the network
slower to adapt to rapid background changes, but making the
model more tolerant to errors due to false negatives. Indeed
in this case the problem is more easily corrected through
self-organization, since weight vectors of false negative pixels
are readily smoothed out by the learning process itself. In
summary, the update in (6) allows us to include into the neural
model the temporal variations of the scene background, at the
same time taking into account, for each pixel, the variations
detected in adjacent pixels.

If an acceptable best matching weight vector BM(p) is
not found for current sample p, the background model Bt−1

should not be updated. In order to take into account the
eventual movement of the PTZ camera from the previous
frame, the model Mt−1(p′) is just copied to the actual model
Mt(p) (see line 11 of PTZ-SOBS algorithm). Using (2) and
supposing p = Hp′, with p = (x, y) and p′ = (x′, y′), the
neuronal map Bt is therefore updated by:

Bt(n× x+ i, n× y + j) = Bt−1(n× x′ + i, n× y′ + j)

for i, j = 0, . . . , n− 1.
4) Initializing the Model Mt(p) for New Background Pix-

els: In the case that the current pixel p in It is a new
background pixel, and therefore it does not correspond to any
pixel p′ in It−1 (see line 12 of PTZ-SOBS algorithm), the
background model Mt(p) should be somehow initialized. Such
an initialization is usually left unspecified in most literature
on background compensation. However, its role for moving
object detection is very important, in order to not introduce
non-existent moving objects into new background areas.

A simple initialization as the one proposed in (3) for
M0(p) could introduce moving objects into the background
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model. Instead, we propose to combine the actual frame pixel
value It(p) with the previous value of the background model
Mt−1(p) for the same pixel p = (x, y), by setting:

Bt(n× x+ i, n× y + j) =

= (1− β)Bt−1(n× x+ i, n× y + j) + βIt(x, y) (7)

for i, j = 0, . . . , n− 1, where β is a suitable weighting factor.

D. Other Key Issues

The description of the neural image sequence model and
of its use for background modeling given in the previous
subsections has taken into account only basic key issues
concerning the background subtraction problem. For the sake
of simplicity, we intentionally omitted the treatment of other
aspects that still are important for real-world applications. Here
we give hints on some of such supplementary key issues and
on their handling using our proposed model.

1) Cast Shadows: One of the well known issues in back-
ground maintenance is that of cast shadows: the background
model should include the shadow, cast by moving objects,
that apparently behaves itself moving, in order to have a
more accurate detection of the moving objects shape. As
in [32], the approach here adopted for moving cast shadow
detection is adapted from that reported in [42], that proved
to be quite accurate and suitable for moving object detection.
Once detected, cast shadow pixels are treated as background
pixels, and the corresponding models are updated as specified
by (6). Further details about handling cast shadows can be
found in [32].

2) Robustness Against False Detections: In order to en-
hance robustness against false detections, as in [48] we exploit
the notion of spatial coherence into the background subtraction
process. To this end, we compute a Neighborhood Coherence
Factor [49], that gives a relative measure of the number of
pixels, belonging to the spatial neighborhood of a given pixel,
whose value is well represented by the background model.
Such factor is used for both foreground segmentation and
in the background updating formula. It has been shown on
publicly available datasets that the introduction of spatial
coherence allows us to greatly enhance robustness of the
background subtraction algorithm against false detections [46].

3) Sudden Illumination Changes: The SOBS algorithm
was not originally designed to cope with sudden illumina-
tion changes. Indeed, its selective update of the background
prevents the insertion into the background model of anything
that differs too much from the background itself, including
sudden illumination changes. Therefore, here we introduced
an intensity stabilization technique for the background model.
It consists in computing, at each time t, the average intensity
difference dt in subsequent images It−1 and It, giving a rough
estimation of the eventual global illumination change; if the
estimated value of dt exceeds the foreground segmentation
threshold, then dt is added to one of the weight vectors of the
background model Bt−1 for each pixel. This ensures that at
least one of the weight vectors takes into account the estimated
global illumination change.

III. EXPERIMENTAL RESULTS

Several experiments have been conducted to validate our
approach to moving object detection in image sequences taken
from PTZ cameras and to compare its results with those
achieved by other state-of-the-art methods. In the following,
choice of parameter values, accuracy metrics, qualitative and
quantitative results will be described for several publicly
available sequences.

A. Parameter Values

Values of PTZ-SOBS algorithm parameters experimentally
chosen for all the considered sequences are reported in Table
I. The distance threshold ϵ adopted in (5) strictly depends
on the color similarity between the moving objects and the
background; suitable values are in the order of 10−2. The
learning rate γ for the background update in (6) depends on
the scene variability and, therefore, also on the PTZ movement
speed. Indeed, in the case of moving cameras, values higher
than for static cameras (ranging in [10−2, 10−1], as reported
in [32]) are needed in order to achieve high accuracy. The
weighting factor β for initializing the background model of
new background pixels in (7) depends on the content of the
newly framed parts of the scene. Indeed, if the new scene
parts contain previously unseen moving objects, then values
of β lower than 1.0 limit their inclusion into the corresponding
new background model.

TABLE I
PARAMETER VALUES FOR PTZ-SOBS ALGORITHM FOR THE CONSIDERED

IMAGE SEQUENCES.

ϵ γ β
Backyard 0.070 0.60 0.55
People1 0.008 0.36 0.95
People2 0.013 0.45 0.70
Cars1 0.008 0.24 0.94
Cars6 0.011 0.47 0.80

The remaining parameters have been fixed for all the se-
quences as n = 3 (n2 being the number of weight vectors used
to model each pixel), w = 1, and σ = 0.75 (w and σ2 being
the half-width of the neighborhood Np and the variance σ2 of
the 2D Gaussian needed to specify the weights for the running
average in (6), respectively). The choice has been driven by
experiments carried out, where, varying the parameters, we
observed almost constant accuracy.

B. Accuracy Metrics

The adopted metrics for evaluating the accuracy are Recall
(Rec), Precision (Prec), and F-measure (F1), defined as

Rec =
TP

TP + FN
, Prec =

TP

TP + FP

and
F1 =

2× Rec× Prec

Rec + Prec

where TP, FN, FP are the total number of true positive, false
negative, and false positive pixels, respectively. Such values
have been obtained comparing the ground truth masks with
the corresponding computed segmentation results.
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Fig. 2. Results of moving object detection for frames 489, 507, 595, 748, and 768 of the Backyard sequence: (a) original frames; (b) ground truth masks;
(c) moving object detection masks computed by the PTZ-SOBS algorithm; (d) representation of the neural background model.

C. Results on MICC Dataset

The Backyard sequence belongs to a dataset for PTZ camera
pose recovery1 of the Media Integration and Communication
Center (MICC) [50]. It is an outdoor sequence consisting of
831 frames of 320 × 240 spatial resolution, adopted here for
showing the results achieved by the PTZ-SOBS algorithm un-
der difficult illumination and cluttered background conditions.
The scene consists of people walking down a street, with
parked cars and waving trees, taken by a moving camera.

In Fig. 2 we report the original sequence frames no. 489,
507, 595, 748, and 768 (column (a)), the corresponding ground
truth masks2 (column (b)), the moving object detection mask
computed by the PTZ-SOBS algorithm (column (c)), and a
representation of the compensated background model (column
(d)). In frame 489 (the fifth frame considered for our experi-
ments) there are no moving people, and the camera has slightly
panned from left to right; the compensated background model
provides quite a good representation of the real background,
and the corresponding detection mask is correctly empty. In
frame 507 a person has entered the scene and a moving
tree appears in the top left of the scene. The compensated
background model provides a good representation of the real
background, also demonstrating the robustness of the adopted

1Publicly available at http://www.micc.unifi.it/vim/datasets/ptz-camera-
pose-recovery/, last accessed on 09/10/12.

2We made publicly available the hand-segmented ground truth masks in the
download section of http://cvprlab.uniparthenope.it.

neural model to moving background, and allows us to obtain
a quite accurate detection mask. In frame 595 another person
entered the scene and is currently under a wide branch of a
waving tree dominating the top left part of the scene. The
background model still allows us to obtain a quite accurate
moving object detection mask, despite the presence of the wav-
ing tree. In frame 748 the scene view is completely changed
due to the PTZ camera movement, and again the background
model and the corresponding moving object detection mask
appear quite accurate. Finally, in frame 768 the moving person
is walking down the street in an area where illumination
conditions worsen, exhibiting a foggy area around the person
head. Nonetheless, the background model still allows us to
detect most part of the person body, even though it is barely
visible by the human eye. It should be explicitly observed that
all false negative pixels are due to evident camouflage of the
scene with some moving person details (the scarf with the
pavement in frame 507, the trouser with the moving tree in
frame 595, and the befogged face with the pavement in frame
768), and could be avoided by connected component analysis
of the detection mask, here intentionally omitted.

Average segmentation accuracy results achieved by the
proposed approach on the Backyard sequence are quite high
(Prec = 0.984, Rec = 0.660, F1 = 0.788). The achieved
high Recall value ensures that most of the moving pixels are
detected as moving; at the same time, the high Precision value
indicates that only few of the pixels detected as moving are
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instead background pixels. The consequent high values of F1,
that is the weighted harmonic mean of Precision and Recall,
allow us to deduce the overall high segmentation accuracy of
the proposed approach for this sequence.

D. Results on Hopkins 155 Dataset

Some of the sequences from the Berkeley Motion Segmen-
tation Dataset3 [11], taken from the Hopkins 155 dataset [51],
have been considered in order to compare the results achieved
by the proposed method with several state-of-the-art methods.

The chosen sequences, named People1, People2, Cars1
and Cars6, have been taken from hand-held cameras, but
they exhibit a camera motion that can be assimilated to
that of a PTZ camera. None of these sequences has initial
empty frames, nor they have initial static frames that enable
background estimation. Therefore, we provided an hand-made
initial background estimate; other initialization strategies could
have been adopted, such as in [13].

Results obtained on selected frames of the considered se-
quences, using the parameter values specified in Section III-A,
are reported in Fig. 3, where we can observe the PTZ-SOBS
detection accuracy. Indeed, the background model (shown in
column (d)) is well adapted to the camera movement, and the
detection masks (shown in column (c)) are quite similar to the
provided ground truth masks (shown in column (b)).

In Table II we report average accuracy values achieved by
the proposed approach on the sequences of Fig. 3, compared
with those achieved by several state-of-the-art methods:

• In [9] Sheikh et al. use orthographic motion segmentation
over a sliding window to segment a set of trajectories,
followed by sparse modeling of per frame appearance to
densely segment images. Their results in Table II have
been reported in [13].

• The motion segmentation algorithm developed by Brox
and Malik [11] analyzes the point trajectories along the
sequence and segments them into clusters. To obtain
pixel-level segmentation, and the corresponding results
reported in Table II, the variational method [52] has
been applied by Zhou et al. in [14] to turn the trajectory
clusters into dense regions.

• In the work of Kwack et al. [12] foreground and back-
ground appearance models in each frame are constructed
and propagated sequentially by Bayesian filtering. The
motion, which transfers the previous appearance models
to the current frame, is robustly estimated by nonparamet-
ric belief propagation (NBP). Their results, both including
and excluding NBP, have been reported in [12].

• Elqursh and Elgammal [13] present a method which en-
ables learning of pixel-based foreground and background
models and segments each frame in an online framework.
Indeed, rather than producing a single segmentation as an
output, it uses Bayesian filtering to maintain a belief over
different labellings, and appearances of the background
and foreground, thus allowing the recovering from errors.
Their results have been reported in [14] for the proposed

3Publicly available at http://lmb.informatik.uni-freiburg.de/resources/data-
sets/, together with binary ground truth images, last accessed on 09/10/12.

approach with and without the label prior (indicated in
Table II as method 1 and 2, respectively).

• In order to segment moving objects from image se-
quences, Zhou et al. [14] avoid complicated motion com-
putation by formulating the problem as outlier detection,
integrating object detection and background learning into
a single process of optimization. Their results in Table II
have been reported in [14].

From Table II we can observe that PTZ-SOBS achieves the
highest F-measure values as compared to all the considered
methods for the sequences People1, People2, and Cars6, while
for sequence Cars1, although quite high, they are lower than
those achieved by [12] and [13].

TABLE II
COMPARISON OF AVERAGE PRECISION, RECALL, AND F-MEASURE

VALUES ON THE SEQUENCES OF FIG. 3.

People1 People2
Prec Rec F1 Prec Rec F1

PTZ-SOBS 0.958 0.923 0.940 0.931 0.971 0.950

Sheikh et al. [9] 0.780 0.630 0.697 0.730 0.830 0.777

Brox and Malik [11] 0.890 0.775 0.829 0.917 0.892 0.904

Kwak et al. [12] - with NBP 0.950 0.930 0.940 0.850 0.890 0.870

Kwak et al. [12] - without NBP 0.910 0.760 0.828 0.910 0.920 0.915

Elqursh and Elgammal [13] - 1 0.940 0.850 0.893 0.690 0.880 0.774

Elqursh and Elgammal [13] - 2 0.970 0.880 0.923 0.870 0.880 0.875

Zhou et al. [14] 0.936 0.933 0.934 0.925 0.965 0.945

Cars1 Cars6
Prec Rec F1 Prec Rec F1

PTZ-SOBS 0.806 0.927 0.862 0.866 0.964 0.913

Sheikh et al. [9] 0.630 0.990 0.770 N.A. N.A. N.A.

Brox and Malik [11] N.A. N.A. N.A. 0.824 0.994 0.901

Kwak et al. [12] - with NBP 0.920 0.840 0.878 N.A. N.A. N.A.

Kwak et al. [12] - without NBP 0.410 0.220 0.286 N.A. N.A. N.A.

Elqursh and Elgammal [13] - 1 0.840 0.990 0.909 N.A. N.A. N.A.

Elqursh and Elgammal [13] - 2 0.850 0.970 0.906 N.A. N.A. N.A.

Zhou et al. [14] N.A. N.A. N.A. 0.837 0.984 0.905

IV. CONCLUSIONS

We propose an approach to the problem of moving object
detection in image sequences taken from PTZ cameras based
on the idea of exploiting the available knowledge concerning
the self-organized learning behavior of the brain, which is the
foundation of human visual perception, and traducing it into
models and algorithms that can accurately solve the problem.
An extension to the case of PTZ cameras of a neural self-
organizing background model is proposed, that automatically
adapts to variations in the scene background, both arising
in a usual stationary camera setting, and due to the PTZ
camera movement. The compensated background model is
adopted for accurate moving object detection, as demonstrated
by experimental results on real image sequences.
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(a) (b) (c) (d)

Fig. 3. Results of moving object detection for frame 40 of the People1 sequence (first row), frame 30 of the People2 sequence (second row), frame 10 of
the Cars1 sequence (third row), frame 30 of the Cars6 sequence (fourth row): (a) original frames; (b) ground truth masks; (c) moving object detection masks
computed by the PTZ-SOBS algorithm; (d) representation of the neural background model.
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